The Decidable and the Undecidable. A Survey of Recent Results

Søren Brinck Knudstorp
NihiL Workshop

February 1, 2024
University of Amsterdam

Plan for the talk

- (Un)decidability: what and why?
- Propositional team logics and their decidability
- Exploring boundaries between the decidable and the undecidable
- Solving problems and obtaining insights along the way
- Using insights to solve one last problem

(Un)decidability: what and why?

What?

A decision problem is decidable if there is an effective method that, given any $i \in I$, accurately answers the question. Otherwise, it is

A logic \mathbf{L}, in a language \mathcal{L}, is decidable if there is an effective method that given any $\varphi \in \mathcal{L}$, determines whether $\mathbf{L} \vdash \varphi$. Otherwise, it is undecidable.

(Un)decidability: what and why?

What?
A decision problem is a collection of inputs I, with a yes-or-no question for each $i \in I$.

A decision problem is decidable if there is an effective method that, given
any $i \in I$, accurately answers the question. Otherwise, it is
A logic \mathbf{L} in a language \mathcal{L}, is decidable if there is an effective method that given any $\varphi \in \mathcal{L}$, determines whether $\mathbf{L} \vdash \varphi$. Otherwise, it is undecidable. Why?

(Un)decidability: what and why?

What?
A decision problem is a collection of inputs I, with a yes-or-no question for each $i \in I$.

A decision problem is decidable if there is an effective method that, given any $i \in I$, accurately answers the question.

A $\operatorname{logic} \mathbf{L}$, in a language \mathcal{L}, is decidable if there is an effective method that, given any $\varphi \in \mathcal{L}$, determines whether $\mathbf{L} \vdash \varphi$. Otherwise, it is undecidable. Why?

(Un)decidability: what and why?

What?
A decision problem is a collection of inputs I, with a yes-or-no question for each $i \in I$.

A decision problem is decidable if there is an effective method that, given any $i \in I$, accurately answers the question. Otherwise, it is undecidable.

A logic \mathbf{L}, in a language \mathcal{L}, is decidable if there is an effective method that, given any $\varphi \in \mathcal{L}$, determines whether $\mathbf{L} \vdash \varphi$. Otherwise, it is undecidable. Why?

(Un)decidability: what and why?

What?
A decision problem is a collection of inputs I, with a yes-or-no question for each $i \in I$.

A decision problem is decidable if there is an effective method that, given any $i \in I$, accurately answers the question. Otherwise, it is undecidable.

A logic \mathbf{L}, in a language \mathcal{L}, is decidable if there is an effective method that, given any $\varphi \in \mathcal{L}$, determines whether $\mathbf{L} \vdash \varphi$. Otherwise, it is undecidable.

(Un)decidability: what and why?

What?
A decision problem is a collection of inputs I, with a yes-or-no question for each $i \in I$.

A decision problem is decidable if there is an effective method that, given any $i \in I$, accurately answers the question. Otherwise, it is undecidable.

A logic \mathbf{L}, in a language \mathcal{L}, is decidable if there is an effective method that, given any $\varphi \in \mathcal{L}$, determines whether $\mathbf{L} \vdash \varphi$. Otherwise, it is undecidable. Why?

(Un)decidability: what and why?

What?
A decision problem is a collection of inputs I, with a yes-or-no question for each $i \in I$.

A decision problem is decidable if there is an effective method that, given any $i \in I$, accurately answers the question. Otherwise, it is undecidable.

A logic \mathbf{L}, in a language \mathcal{L}, is decidable if there is an effective method that, given any $\varphi \in \mathcal{L}$, determines whether $\mathbf{L} \vdash \varphi$. Otherwise, it is undecidable.

Why? Because it is a deep, profound and significant conceptual distinction.

Propositional team logics and their decidability

```
Prop }->{0,1}\mathrm{ ,
```


Definition (some team-semantic clauses)

\square

Propositional team logics and their decidability

Traditionally (in, e.g., CPC), formulas φ are evaluated at single valuations $v:$ Prop $\rightarrow\{0,1\}$,

$$
v \vDash \varphi .
$$

In team semantics, formulas φ are evaluated at $s \subseteq\{v \mid v:$ Prop $\rightarrow\{0,1\}\}$

Definition (some team-semantic clauses)

Let $X:=\{v \mid v:$ Pron $\rightarrow\{0,1\}\}$. For $s \in \mathcal{P}(X)$, we define

Propositional team logics and their decidability

Traditionally (in, e.g., CPC), formulas φ are evaluated at single valuations $v:$ Prop $\rightarrow\{0,1\}$,

$$
v \vDash \varphi .
$$

In team semantics, formulas φ are evaluated at sets ('teams') of valuations $s \subseteq\{v \mid v:$ Prop $\rightarrow\{0,1\}\}$,

$$
s \vDash \varphi .
$$

Definition (some team-semantic clauses)

Let $X:=\{v| | v:$ Pron $\rightarrow\{0,1\}\}$. For $s \in \mathcal{P}(X)$, we define

Observation. All propositional team logics are decidable: given φ, simply check whether $s \vDash \varphi$ for all $s \subseteq\{v \mid v: \operatorname{Prop}(\varphi) \rightarrow\{0,1\}\}$.

Propositional team logics and their decidability

Traditionally (in, e.g., CPC), formulas φ are evaluated at single valuations $v:$ Prop $\rightarrow\{0,1\}$,

$$
v \vDash \varphi .
$$

In team semantics, formulas φ are evaluated at sets ('teams') of valuations $s \subseteq\{v \mid v:$ Prop $\rightarrow\{0,1\}\}$,

$$
s \vDash \varphi
$$

Definition (some team-semantic clauses)

Let $X:=\{v \mid v:$ Prop $\rightarrow\{0,1\}\}$. For $s \in \mathcal{P}(X)$, we define

$$
\begin{array}{lll}
s \vDash p & \text { iff } & \forall v \in s: v(p)=1, \\
s \vDash \varphi \wedge \psi & \text { iff } & s \vDash \varphi \text { and } s \vDash \psi, \\
s \vDash \varphi W \psi & \text { iff } & s \vDash \varphi \text { or } s \vDash \psi, \\
s \vDash \sim \varphi & \text { iff } & s \not \models \varphi, \\
s \vDash \varphi \vee \psi & \text { iff } & \text { there exist } s^{\prime}, s^{\prime \prime} \in \mathcal{P}(X) \text { such that } s^{\prime} \vDash \varphi ; \\
& & s^{\prime \prime} \vDash \psi ; \text { and } s=s^{\prime} \cup s^{\prime \prime} .
\end{array}
$$

Propositional team logics and their decidability

Traditionally (in, e.g., CPC), formulas φ are evaluated at single valuations $v:$ Prop $\rightarrow\{0,1\}$,

$$
v \vDash \varphi .
$$

In team semantics, formulas φ are evaluated at sets ('teams') of valuations $s \subseteq\{v \mid v: \operatorname{Prop} \rightarrow\{0,1\}\}$,

$$
s \vDash \varphi
$$

Definition (some team-semantic clauses)

Let $X:=\{v \mid v:$ Prop $\rightarrow\{0,1\}\}$. For $s \in \mathcal{P}(X)$, we define

$$
\begin{array}{lll}
s \vDash p & \text { iff } & \forall v \in s: v(p)=1, \\
s \vDash \varphi \wedge \psi & \text { iff } & s \vDash \varphi \text { and } s \vDash \psi, \\
s \vDash \varphi W \psi & \text { iff } & s \vDash \varphi \text { or } s \vDash \psi, \\
s \vDash \sim \varphi & \text { iff } & s \not \vDash \varphi, \\
s \vDash \varphi \vee \psi & \text { iff } & \text { there exist } s^{\prime}, s^{\prime \prime} \in \mathcal{P}(X) \text { such that } s^{\prime} \vDash \varphi ; \\
& & s^{\prime \prime} \vDash \psi ; \text { and } s=s^{\prime} \cup s^{\prime \prime} .
\end{array}
$$

Observation. All propositional team logics are decidable:

Propositional team logics and their decidability

Traditionally (in, e.g., CPC), formulas φ are evaluated at single valuations $v:$ Prop $\rightarrow\{0,1\}$,

$$
v \vDash \varphi .
$$

In team semantics, formulas φ are evaluated at sets ('teams') of valuations $s \subseteq\{v \mid v: \operatorname{Prop} \rightarrow\{0,1\}\}$,

$$
s \vDash \varphi
$$

Definition (some team-semantic clauses)

Let $X:=\{v \mid v:$ Prop $\rightarrow\{0,1\}\}$. For $s \in \mathcal{P}(X)$, we define

$$
\begin{array}{lll}
s \vDash p & \text { iff } & \forall v \in s: v(p)=1, \\
s \vDash \varphi \wedge \psi & \text { iff } & s \vDash \varphi \text { and } s \vDash \psi, \\
s \vDash \varphi W \psi & \text { iff } & s \vDash \varphi \text { or } s \vDash \psi, \\
s \vDash \sim \varphi & \text { iff } & s \not \vDash \varphi, \\
s \vDash \varphi \vee \psi & \text { iff } & \text { there exist } s^{\prime}, s^{\prime \prime} \in \mathcal{P}(X) \text { such that } s^{\prime} \vDash \varphi ; \\
& & s^{\prime \prime} \vDash \psi ; \text { and } s=s^{\prime} \cup s^{\prime \prime} .
\end{array}
$$

Observation. All propositional team logics are decidable: given φ, simply check whether $s \vDash \varphi$ for all $s \subseteq\{v \mid v: \operatorname{Prop}(\varphi) \rightarrow\{0,1\}\}$.

Yet, this explanation is hardly satisfactory. What is it that makes propositional team logics decidable, and others not?

Team semantics as relational semantics

Recall our semantic clauses: For $X:=\{v \mid v: \operatorname{Prop} \rightarrow\{0,1\}\}$ and $s \in \mathcal{P}(X)$, we had

$$
\begin{array}{lll}
s \vDash p & \text { iff } & \forall v \in s: v(p)=1, \\
s \vDash \varphi \wedge \psi & \text { iff } & s \vDash \varphi \text { and } s \vDash \psi, \\
s \vDash \varphi W \psi & \text { iff } & s \vDash \varphi \text { or } s \vDash \psi, \\
s \vDash \sim \varphi & \text { iff } & s \not \models \varphi, \\
s \vDash \varphi \vee \psi & \text { iff } & \text { there exist } s^{\prime}, s^{\prime \prime} \in \mathcal{P}(X) \text { such that } s^{\prime} \vDash \varphi ; \\
& & s^{\prime \prime} \vDash \psi ; \text { and } s=s^{\prime} \cup s^{\prime \prime} .
\end{array}
$$

Team semantics as relational semantics

Recall our semantic clauses: For $X:=\{v \mid v:$ Prop $\rightarrow\{0,1\}\}$ and $s \in \mathcal{P}(X)$, we had

$$
\begin{array}{lll}
s \vDash p & \text { iff } & \forall v \in s: v(p)=1, \\
s \vDash \varphi \wedge \psi & \text { iff } & s \vDash \varphi \text { and } s \vDash \psi, \\
s \vDash \varphi \vee \psi & \text { iff } & s \vDash \varphi \text { or } s \vDash \psi, \\
s \vDash \sim \varphi & \text { iff } & s \not \models \varphi, \\
s \vDash \varphi \circ \psi & \text { iff } & \text { there exist } s^{\prime}, s^{\prime \prime} \in \mathcal{P}(X) \text { such that } s^{\prime} \vDash \varphi ; \\
& & s^{\prime \prime} \vDash \psi ; \text { and } s=s^{\prime} \cup s^{\prime \prime} .
\end{array}
$$

Team semantics as relational semantics

Recall our semantic clauses: For $X:=\{v \mid v: \operatorname{Prop} \rightarrow\{0,1\}\}$ and $s \in \mathcal{P}(X)$, we had

$$
\begin{array}{lll}
s \vDash p & \text { iff } & \forall v \in s: v(p)=1, \\
s \vDash \varphi \wedge \psi & \text { iff } & s \vDash \varphi \text { and } s \vDash \psi, \\
s \vDash \varphi \vee \psi & \text { iff } & s \vDash \varphi \text { or } s \vDash \psi, \\
s \vDash \sim \varphi & \text { iff } & s \not \vDash \varphi, \\
s \vDash \varphi \circ \psi & \text { iff } & \text { there exist } s^{\prime}, s^{\prime \prime} \in \mathcal{P}(X) \text { such that } s^{\prime} \vDash \varphi ; \\
& & s^{\prime \prime} \vDash \psi ; \text { and } s=s^{\prime} \cup s^{\prime \prime} .
\end{array}
$$

This induces a powerset frame $\mathbb{F}=(\mathcal{P}(X), \cup)$, where 'o' is a binary modality referring to the ternary \cup-relation $s=s^{\prime} \cup s^{\prime \prime}$;

Team semantics as relational semantics

Recall our semantic clauses: For $X:=\{v \mid v: \operatorname{Prop} \rightarrow\{0,1\}\}$ and $s \in \mathcal{P}(X)$, we had

$$
\begin{array}{lll}
s \vDash p & \text { iff } & \forall v \in s: v(p)=1, \\
s \vDash \varphi \wedge \psi & \text { iff } & s \vDash \varphi \text { and } s \vDash \psi, \\
s \vDash \varphi \vee \psi & \text { iff } & s \vDash \varphi \text { or } s \vDash \psi, \\
s \vDash \sim \varphi & \text { iff } & s \not \models \varphi, \\
s \vDash \varphi \circ \psi & \text { iff } & \text { there exist } s^{\prime}, s^{\prime \prime} \in \mathcal{P}(X) \text { such that } s^{\prime} \vDash \varphi ; \\
& & s^{\prime \prime} \vDash \psi ; \text { and } s=s^{\prime} \cup s^{\prime \prime} .
\end{array}
$$

This induces a powerset frame $\mathbb{F}=(\mathcal{P}(X), \cup)$, where ' \circ ' is a binary modality referring to the ternary \cup-relation $s=s^{\prime} \cup s^{\prime \prime}$;

In fact, if we take all powerset frames $(\mathcal{P}(X), \cup)$, redefine the base clause
and only allow principal valuations $V: \operatorname{Prop} \rightarrow\{\downarrow s \mid s \in \mathcal{P}(X)\}$, we get

Team semantics as relational semantics

Recall our semantic clauses: For $X:=\{v \mid v: \operatorname{Prop} \rightarrow\{0,1\}\}$ and $s \in \mathcal{P}(X)$, we had

$$
\begin{array}{lll}
s \vDash p & \text { iff } & \forall v \in s: v(p)=1, \\
s \vDash \varphi \wedge \psi & \text { iff } & s \vDash \varphi \text { and } s \vDash \psi, \\
s \vDash \varphi \vee \psi & \text { iff } & s \vDash \varphi \text { or } s \vDash \psi, \\
s \vDash \sim \varphi & \text { iff } & s \not \vDash \varphi, \\
s \vDash \varphi \circ \psi & \text { iff } & \text { there exist } s^{\prime}, s^{\prime \prime} \in \mathcal{P}(X) \text { such that } s^{\prime} \vDash \varphi ; \\
& & s^{\prime \prime} \vDash \psi ; \text { and } s=s^{\prime} \cup s^{\prime \prime} .
\end{array}
$$

This induces a powerset frame $\mathbb{F}=(\mathcal{P}(X), \cup)$, where 'o' is a binary modality referring to the ternary \cup-relation $s=s^{\prime} \cup s^{\prime \prime}$; and a model $\mathbb{M}=(\mathcal{P}(X), \cup, V)$ with a 'principal valuation', i.e.,

$$
V(p):=\{s \in \mathcal{P}(X) \mid \forall v \in s: v(p)=1\}=\downarrow\{v \in X \mid v(p)=1\} .
$$

In fact, if we take all powerset frames $(\mathcal{P}(X), \cup)$, redefine the base clause
and only allow principal valuations $V:$ Pron $\rightarrow\{\downarrow s \mid s \in \mathcal{P}(X)\}$, we get

Team semantics as relational semantics

Recall our semantic clauses: For $X:=\{v \mid v: \operatorname{Prop} \rightarrow\{0,1\}\}$ and $s \in \mathcal{P}(X)$, we had

$$
\begin{array}{lll}
s \vDash p & \text { iff } & \forall v \in s: v(p)=1, \\
s \vDash \varphi \wedge \psi & \text { iff } & s \vDash \varphi \text { and } s \vDash \psi, \\
s \vDash \varphi \vee \psi & \text { iff } & s \vDash \varphi \text { or } s \vDash \psi, \\
s \vDash \sim \varphi & \text { iff } & s \not \vDash \varphi, \\
s \vDash \varphi \circ \psi & \text { iff } & \text { there exist } s^{\prime}, s^{\prime \prime} \in \mathcal{P}(X) \text { such that } s^{\prime} \vDash \varphi ; \\
& & s^{\prime \prime} \vDash \psi ; \text { and } s=s^{\prime} \cup s^{\prime \prime} .
\end{array}
$$

This induces a powerset frame $\mathbb{F}=(\mathcal{P}(X), \cup)$, where 'o' is a binary modality referring to the ternary \cup-relation $s=s^{\prime} \cup s^{\prime \prime}$; and a model $\mathbb{M}=(\mathcal{P}(X), \cup, V)$ with a 'principal valuation', i.e.,

$$
V(p):=\{s \in \mathcal{P}(X) \mid \forall v \in s: v(p)=1\}=\downarrow\{v \in X \mid v(p)=1\}
$$

In fact, if we take all powerset frames $(\mathcal{P}(X), \cup)$,
and only allow principal valuations $V: \operatorname{Prop} \rightarrow\{\downarrow s \mid s \in \mathcal{P}(X)\}$, we get

Team semantics as relational semantics

Recall our semantic clauses: For $X:=\{v \mid v: \operatorname{Prop} \rightarrow\{0,1\}\}$ and $s \in \mathcal{P}(X)$, we had

$$
\begin{array}{lll}
s \vDash p & \text { iff } & \forall v \in s: v(p)=1, \\
s \vDash \varphi \wedge \psi & \text { iff } & s \vDash \varphi \text { and } s \vDash \psi, \\
s \vDash \varphi \vee \psi & \text { iff } & s \vDash \varphi \text { or } s \vDash \psi, \\
s \vDash \sim \varphi & \text { iff } & s \not \models \varphi, \\
s \vDash \varphi \circ \psi & \text { iff } & \text { there exist } s^{\prime}, s^{\prime \prime} \in \mathcal{P}(X) \text { such that } s^{\prime} \vDash \varphi ; \\
& & s^{\prime \prime} \vDash \psi ; \text { and } s=s^{\prime} \cup s^{\prime \prime} .
\end{array}
$$

This induces a powerset frame $\mathbb{F}=(\mathcal{P}(X), \cup)$, where 'o' is a binary modality referring to the ternary \cup-relation $s=s^{\prime} \cup s^{\prime \prime}$; and a model $\mathbb{M}=(\mathcal{P}(X), \cup, V)$ with a 'principal valuation', i.e.,

$$
V(p):=\{s \in \mathcal{P}(X) \mid \forall v \in s: v(p)=1\}=\downarrow\{v \in X \mid v(p)=1\}
$$

In fact, if we take all powerset frames $(\mathcal{P}(X), \cup)$, redefine the base clause

$$
(\mathcal{P}(X), \cup, V), s \Vdash p \quad \text { iff } \quad s \in V(p),
$$

and only allow principal valuations T
Prop $\rightarrow\{\downarrow s \mid s \in \mathcal{P}(X)\}$, we get

Team semantics as relational semantics

Recall our semantic clauses: For $X:=\{v \mid v: \operatorname{Prop} \rightarrow\{0,1\}\}$ and $s \in \mathcal{P}(X)$, we had

$$
\begin{array}{lll}
s \vDash p & \text { iff } & \forall v \in s: v(p)=1, \\
s \vDash \varphi \wedge \psi & \text { iff } & s \vDash \varphi \text { and } s \vDash \psi, \\
s \vDash \varphi \vee \psi & \text { iff } & s \vDash \varphi \text { or } s \vDash \psi, \\
s \vDash \sim \varphi & \text { iff } & s \not \models \varphi, \\
s \vDash \varphi \circ \psi & \text { iff } & \text { there exist } s^{\prime}, s^{\prime \prime} \in \mathcal{P}(X) \text { such that } s^{\prime} \vDash \varphi ; \\
& & s^{\prime \prime} \vDash \psi ; \text { and } s=s^{\prime} \cup s^{\prime \prime} .
\end{array}
$$

This induces a powerset frame $\mathbb{F}=(\mathcal{P}(X), \cup)$, where 'o' is a binary modality referring to the ternary \cup-relation $s=s^{\prime} \cup s^{\prime \prime}$; and a model $\mathbb{M}=(\mathcal{P}(X), \cup, V)$ with a 'principal valuation', i.e.,

$$
V(p):=\{s \in \mathcal{P}(X) \mid \forall v \in s: v(p)=1\}=\downarrow\{v \in X \mid v(p)=1\}
$$

In fact, if we take all powerset frames $(\mathcal{P}(X), \cup)$, redefine the base clause

$$
(\mathcal{P}(X), \cup, V), s \Vdash p \quad \text { iff } \quad s \in V(p),
$$

and only allow principal valuations $V: \operatorname{Prop} \rightarrow\{\downarrow s \mid s \in \mathcal{P}(X)\}$,

Team semantics as relational semantics

Recall our semantic clauses: For $X:=\{v \mid v: \operatorname{Prop} \rightarrow\{0,1\}\}$ and $s \in \mathcal{P}(X)$, we had

$$
\begin{array}{lll}
s \vDash p & \text { iff } & \forall v \in s: v(p)=1, \\
s \vDash \varphi \wedge \psi & \text { iff } & s \vDash \varphi \text { and } s \vDash \psi, \\
s \vDash \varphi \vee \psi & \text { iff } & s \vDash \varphi \text { or } s \vDash \psi, \\
s \vDash \sim \varphi & \text { iff } & s \not \models \varphi, \\
s \vDash \varphi \circ \psi & \text { iff } & \text { there exist } s^{\prime}, s^{\prime \prime} \in \mathcal{P}(X) \text { such that } s^{\prime} \vDash \varphi ; \\
& & s^{\prime \prime} \vDash \psi ; \text { and } s=s^{\prime} \cup s^{\prime \prime} .
\end{array}
$$

This induces a powerset frame $\mathbb{F}=(\mathcal{P}(X), \cup)$, where 'o' is a binary modality referring to the ternary \cup-relation $s=s^{\prime} \cup s^{\prime \prime}$; and a model
$\mathbb{M}=(\mathcal{P}(X), \cup, V)$ with a 'principal valuation', i.e.,

$$
V(p):=\{s \in \mathcal{P}(X) \mid \forall v \in s: v(p)=1\}=\downarrow\{v \in X \mid v(p)=1\}
$$

In fact, if we take all powerset frames $(\mathcal{P}(X), \cup)$, redefine the base clause

$$
(\mathcal{P}(X), \cup, V), s \Vdash p \quad \text { iff } \quad s \in V(p),
$$

and only allow principal valuations $V:$ Prop $\rightarrow\{\downarrow s \mid s \in \mathcal{P}(X)\}$, we get sound and complete relational semantics for team logics.

Team semantics as relational semantics

Recall our semantic clauses: For $X:=\{v \mid v: \operatorname{Prop} \rightarrow\{0,1\}\}$ and $s \in \mathcal{P}(X)$, we had

$$
\begin{array}{lll}
s \vDash p & \text { iff } & \forall v \in s: v(p)=1, \\
s \vDash \varphi \wedge \psi & \text { iff } & s \vDash \varphi \text { and } s \vDash \psi, \\
s \vDash \varphi \vee \psi & \text { iff } & s \vDash \varphi \text { or } s \vDash \psi, \\
s \vDash \sim \varphi & \text { iff } & s \not \models \varphi, \\
s \vDash \varphi \circ \psi & \text { iff } & \text { there exist } s^{\prime}, s^{\prime \prime} \in \mathcal{P}(X) \\
& & s^{\prime \prime} \vDash \psi ; \text { and } s=s^{\prime} \cup s^{\prime \prime} .
\end{array}
$$

This induces a powerset frame $\mathbb{F}=(\mathcal{P}(X), \cup)$, where 'o' is a binary modality referring to the ternary \cup-relation $s=s^{\prime} \cup s^{\prime \prime}$; and a model
$\mathbb{M}=(\mathcal{P}(X), \cup, V)$ with a 'principal valuation', i.e.,

$$
V(p):=\{s \in \mathcal{P}(X) \mid \forall v \in s: v(p)=1\}=\downarrow\{v \in X \mid v(p)=1\}
$$

In fact, if we take all powerset frames $(\mathcal{P}(X), \cup)$, redefine the base clause

$$
(\mathcal{P}(X), \cup, V), s \Vdash p \quad \text { iff } \quad s \in V(p),
$$

and only allow principal valuations $V:$ Prop $\rightarrow\{\downarrow s \mid s \in \mathcal{P}(X)\}$, we get sound and complete relational semantics for team logics.

Proof. A simple p-morphism argument.

Powerset frames and Boolean frames

Summarizing, (i) team logics are decidable,

```
team logics are given by powerset frames (\mathcal{P}(X),\cup) with principal
valuations V : Prop }->{\downarrows|s\in\mathcal{P}(X)
Question: Sticking with the signature { }\wedge,\vee,~,\circ},\mathrm{ what happens if we allow
for arbitrary valuations V : Prop }->\mathcal{P}\mathcal{P}(X)\mathrm{ ? Does the logic remain
decidable?
In fact, this question is intimately related with an open problem: Goranko
and Vakarelov (1999) consider the logic of Boolean frames - instead of a
powerset }\mathcal{P}(X)\mathrm{ , the carrier is a Boolean algebra }B\mathrm{ - and raises the problem
of its decidability.
```

Theorem
The logic of powerset frames, in the signature $\{\wedge, \vee, \sim, \circ\}$, with arbitrary
valuations is undecidable. And so is the hyperboolean modal logic of
Goranko and Vakarelov (1999)

[^0] modalities for all the Boolean operations, not just the join.

Powerset frames and Boolean frames

Summarizing, (i) team logics are decidable, and (ii) relational semantics for team logics are given by powerset frames $(\mathcal{P}(X), \cup)$ with principal valuations V : Prop $\rightarrow\{\downarrow s \mid s \in \mathcal{P}(X)\}$.
Question: Sticking with the signature $\{\wedge, \vee, \sim, \circ\}$, what happens if we allow for arbitrary valuations $V:$ Prop $\rightarrow \mathcal{P} \mathcal{P}(X)$? Does the logic remain decidable?

In fact, this question is intimately related with an open problem: Goranko and Vakarelov (1999) consider the logic of Boolean frames - instead of a powerset $\mathcal{P}(X)$, the carrier is a Boolean algebra B - and raises the problem of its decidability.
\square
The logic of powerset frames, in the signature $\{\wedge, \vee, \sim, 0\}$, with arbitrary valuations is undecidable. And so is the hyperboolean modal logic of
Goranko and Vakarelov (1999).

[^1] modalities for all the Boolean operations, not just the join.

Powerset frames and Boolean frames

Summarizing, (i) team logics are decidable, and (ii) relational semantics for team logics are given by powerset frames $(\mathcal{P}(X), \cup)$ with principal valuations $V:$ Prop $\rightarrow\{\downarrow s \mid s \in \mathcal{P}(X)\}$.
Question: Sticking with the signature $\{\wedge, \vee, \sim, \circ\}$, what happens if we allow for arbitrary valuations V : Prop $\rightarrow \mathcal{P} \mathcal{P}(X)$? Does the logic remain decidable?

In fact, this question is intimately related with an open problem: Goranko and Vakarelov (1999) consider the logic of Boolean frames - instead of a powerset $\mathcal{P}(X)$, the carrier is a Boolean algebra B - and raises the problem of its decidability.

Theorem
The logic of powerset frames, in the signature $\{\wedge, V, \sim, 0\}$, with arbitrary
valuations is undecidable. And so is the hyperboolean modal logic ofGoranko and Vakarelov (1999).

[^2]modalities for all the Boolean operations, not just the join.

Powerset frames and Boolean frames

Summarizing, (i) team logics are decidable, and (ii) relational semantics for team logics are given by powerset frames $(\mathcal{P}(X), \cup)$ with principal valuations $V:$ Prop $\rightarrow\{\downarrow s \mid s \in \mathcal{P}(X)\}$.
Question: Sticking with the signature $\{\wedge, \vee, \sim, \circ\}$, what happens if we allow for arbitrary valuations V : Prop $\rightarrow \mathcal{P} \mathcal{P}(X)$? Does the logic remain decidable?

In fact, this question is intimately related with an open problem:
powerset $\mathcal{P}(X)$, the carrier is a Boolean algebra B - and raises the problem
of its decidability.

Theorem
The logic of powerset frames, in the signature $\{\wedge, \vee, \sim, 0\}$, with arbitrary
valuations is undecidable. And so is the hyperboolean modal logic of
Goranko and Vakarelov (1999)
${ }^{1}$ Goranko and Vakarelov (1999) call their logic 'hyperboolean modal logic' and include
modalities for all the Boolean operations, not just the join.

Powerset frames and Boolean frames

Summarizing, (i) team logics are decidable, and (ii) relational semantics for team logics are given by powerset frames $(\mathcal{P}(X), \cup)$ with principal valuations $V:$ Prop $\rightarrow\{\downarrow s \mid s \in \mathcal{P}(X)\}$.
Question: Sticking with the signature $\{\wedge, \vee, \sim, \circ\}$, what happens if we allow for arbitrary valuations $V: \operatorname{Prop} \rightarrow \mathcal{P}(X)$? Does the logic remain decidable?
In fact, this question is intimately related with an open problem: Goranko and Vakarelov (1999) consider the logic of Boolean frames - instead of a powerset $\mathcal{P}(X)$, the carrier is a Boolean algebra B - and raises the problem of its decidability. ${ }^{1}$

The logic of powerset frames, in the signature $\{\wedge, \vee, \sim, 0\}$, with arbitrary valuations is undecidable. And so is the hyperboolean modal logic of Goranko and Vakarelov (1999)

[^3]
Powerset frames and Boolean frames

Summarizing, (i) team logics are decidable, and (ii) relational semantics for team logics are given by powerset frames $(\mathcal{P}(X), \cup)$ with principal valuations $V: \operatorname{Prop} \rightarrow\{\downarrow s \mid s \in \mathcal{P}(X)\}$.
Question: Sticking with the signature $\{\wedge, \vee, \sim, \circ\}$, what happens if we allow for arbitrary valuations $V: \operatorname{Prop} \rightarrow \mathcal{P} \mathcal{P}(X)$? Does the logic remain decidable?

In fact, this question is intimately related with an open problem: Goranko and Vakarelov (1999) consider the logic of Boolean frames - instead of a powerset $\mathcal{P}(X)$, the carrier is a Boolean algebra B - and raises the problem of its decidability. ${ }^{1}$

Theorem

The logic of powerset frames, in the signature $\{\wedge, \vee, \sim, \circ\}$, with arbitrary valuations is undecidable. And so is the hyperboolean modal logic of Goranko and Vakarelov (1999).

[^4]
Proof method: tiling

- A (Wang) tile is a square with colors on each side.
each point in the quadrant \mathbb{N}^{2} can be assigned a tile from \mathcal{W} such that neighboring tiles share matching colors on connecting sides. The tiling problem was introduced by Wang (1963) and proven by Berger (1966)

Figure 2: A tiling of the
Figure 1: Wang tiles
plane

Proof method: tiling

- A (Wang) tile is a square with colors on each side.
- The tiling problem: given any finite set of tiles \mathcal{W},
each point in the quadrant \mathbb{N}^{2} can be assigned a tile from \mathcal{W} such that
neighboring tiles share matching colors on connecting sides.
The tiling problem was introduced by Wang (1963) and proven
by Berger (1966).

Figure 2: A tiling of the
Figure 1: Wang tiles
plane

Proof method: tiling

- A (Wang) tile is a square with colors on each side.
- The tiling problem: given any finite set of tiles \mathcal{W}, determine whether each point in the quadrant \mathbb{N}^{2} can be assigned a tile from \mathcal{W} such that neighboring tiles share matching colors on connecting sides.
by Berger (1966).

Figure 2: A tiling of the
Figure 1: Wang tiles
plane

Proof method: tiling

- A (Wang) tile is a square with colors on each side.
- The tiling problem: given any finite set of tiles \mathcal{W}, determine whether each point in the quadrant \mathbb{N}^{2} can be assigned a tile from \mathcal{W} such that neighboring tiles share matching colors on connecting sides.
- The tiling problem was introduced by Wang (1963) and proven undecidable by Berger (1966).

Figure 2: A tiling of the
Figure 1: Wang tiles
plane

Proof method: tiling

- A (Wang) tile is a square with colors on each side.
- The tiling problem: given any finite set of tiles \mathcal{W}, determine whether each point in the quadrant \mathbb{N}^{2} can be assigned a tile from \mathcal{W} such that neighboring tiles share matching colors on connecting sides.
- The tiling problem was introduced by Wang (1963) and proven undecidable by Berger (1966).

Figure 1: Wang tiles

Figure 2: A tiling of the plane

Proof method: tiling

Theorem

The logic of powerset frames, in the signature $\{\wedge, \vee, \sim, \circ\}$, with arbitrary valuations is undecidable. And so is the hyperboolean modal logic of Goranko and Vakarelov (1999).

Proof idea.

For each finite set of tiles \mathcal{W}, we construct a formula $\phi_{\mathcal{W}}$ such that \mathcal{W} tiles the quadrant if and only if $\phi_{\mathcal{W}}$ is satisfiable.

Dividing the proof into two lemmas, corresponding to a direction each, we can prove both results in one go

Proof method: tiling

Theorem

The logic of powerset frames, in the signature $\{\wedge, \vee, \sim, \circ\}$, with arbitrary valuations is undecidable. And so is the hyperboolean modal logic of Goranko and Vakarelov (1999).

Proof idea.

For each finite set of tiles \mathcal{W}, we construct a formula $\phi_{\mathcal{W}}$ such that \mathcal{W} tiles the quadrant if and only if $\phi_{\mathcal{W}}$ is satisfiable.

Dividing the proof into two lemmas, corresponding to a direction each, we can prove both results in one go:

Proof method: tiling

Theorem

The logic of powerset frames, in the signature $\{\wedge, \vee, \sim, \circ\}$, with arbitrary valuations is undecidable. And so is the hyperboolean modal logic of Goranko and Vakarelov (1999).

Proof idea.

For each finite set of tiles \mathcal{W}, we construct a formula $\phi_{\mathcal{W}}$ such that \mathcal{W} tiles the quadrant if and only if $\phi_{\mathcal{W}}$ is satisfiable.

Dividing the proof into two lemmas, corresponding to a direction each, we can prove both results in one go:

Lemma

If $\phi_{\mathcal{W}}$ is satisfiable (in a Boolean frame), then \mathcal{W} tiles \mathbb{N}^{2}.

Proof method: tiling

Theorem

The logic of powerset frames, in the signature $\{\wedge, \vee, \sim, \circ\}$, with arbitrary valuations is undecidable. And so is the hyperboolean modal logic of Goranko and Vakarelov (1999).

Proof idea.

For each finite set of tiles \mathcal{W}, we construct a formula $\phi_{\mathcal{W}}$ such that \mathcal{W} tiles the quadrant if and only if $\phi_{\mathcal{W}}$ is satisfiable.

Dividing the proof into two lemmas, corresponding to a direction each, we can prove both results in one go:

Lemma

If $\phi_{\mathcal{W}}$ is satisfiable (in a Boolean frame), then \mathcal{W} tiles \mathbb{N}^{2}.

Lemma

If \mathcal{W} tiles \mathbb{N}^{2}, then $\phi_{\mathcal{W}}$ is satisfiable (in $(\mathcal{P}(\mathbb{N}), \cup)$).

Insight 1: valuations matter

Semilattice frames, associativity and negation

Question: Since we can weaken from powersets to Boolean algebras and stay undecidable, how much further can we go while remaining undecidable?

Question: What if we weaken even further than semilattices?
(Partial) answer: As semilattices are partial orders '<' with all binary suprema, we could consider the logic of all partial orders simpliciter. This is modal information logic, which is proven

Question: What if we, instead, reduce our signature $\{\wedge, \vee, \sim, \circ\}$?
Answer: If we stick to semilattices but omit negation, so signature is
we obtain Finean truthmaker semantics, proven decidable in SBK (2023a).

Semilattice frames, associativity and negation

Question: Since we can weaken from powersets to Boolean algebras and stay undecidable, how much further can we go while remaining undecidable? Weakening from powersets $(\mathcal{P}(X), \cup)$ to general (join-)semilattices (S, \sqcup), SBK (2023a))

Question: What if we weaken even further than semilattices? (Partial) answer: As semilattices are partial orders ' \leq ' with all binary suprema, we could consider the logic of all partial orders simpliciter. This is modal information logic, which is proven

Question: What if we, instead, reduce our signature $\{\wedge, \vee, \sim, \circ\}$?
Answer: If we stick to semilattices but omit negation, so signature is
we obtain Finean truthmaker semantics, proven decidable in SBK (2023a).

Semilattice frames, associativity and negation

Question: Since we can weaken from powersets to Boolean algebras and stay undecidable, how much further can we go while remaining undecidable? Weakening from powersets $(\mathcal{P}(X), \cup)$ to general (join-)semilattices (S, \sqcup), we get a the problem posed by Bergman (2018) and Jipsen et al. (2021) (and SBK (2023a)).

For any class \mathcal{S} of semilattices containing $(\mathcal{P}(\mathbb{N}), \cup)$, its logic in the signature is undecidable.

Question: What if we weaken even further than semilattices?
(Partial) answer: As semilattices are partial orders ' \leq ' with all binary suprema, we could consider the logic of all partial orders simpliciter. This is modal information logic, which is proven

Question: What if we, instead, reduce our signature $\{\wedge, V, \sim, 0\} ?$
Answer: If we stick to semilattices but omit negation, so signature is
we obtain Finean truthmaker semantics, proven decidable in SBK (2023a).

Semilattice frames, associativity and negation

Question: Since we can weaken from powersets to Boolean algebras and stay undecidable, how much further can we go while remaining undecidable? Weakening from powersets $(\mathcal{P}(X), \cup)$ to general (join-)semilattices (S, \sqcup), we get a the problem posed by Bergman (2018) and Jipsen et al. (2021) (and SBK (2023a)).

Theorem

For any class \mathcal{S} of semilattices containing $(\mathcal{P}(\mathbb{N}), \cup)$, its logic in the signature $\{\wedge, \vee, \sim, \circ\}$, is undecidable.

Question: What if we weaken even further than semilattices?
(Partial) answer: As semilattices are partial orders ' \leq ' with all binary
suprema, we could consider the logic of all partial orders simpliciter. This is modal information logic, which is proven

Question: What if we, instead, reduce our signature \{
Answer: If we stick to semilattices but omit negation, so signature is
we obtain Finean truthmaker semantics, proven decidable in SBK
(2023a).

Semilattice frames, associativity and negation

Question: Since we can weaken from powersets to Boolean algebras and stay undecidable, how much further can we go while remaining undecidable? Weakening from powersets $(\mathcal{P}(X), \cup)$ to general (join-)semilattices (S, \sqcup), we get a the problem posed by Bergman (2018) and Jipsen et al. (2021) (and SBK (2023a)).

Theorem

For any class \mathcal{S} of semilattices containing $(\mathcal{P}(\mathbb{N}), \cup)$, its logic in the signature $\{\wedge, \vee, \sim, \circ\}$, is undecidable.

Question: What if we weaken even further than semilattices?
(Partial) answer: As semilattices are partial orders 's' with all binary
suprema, we could consider the logic of all partial orders simpliciter. This is modal information logic, which is proven

Question: What if we, instead, reduce our signature \{
Answer: If we stick to semilattices but omit negation, so signature is
we obtain Finean truthmaker semantics, proven
in SBK

Semilattice frames, associativity and negation

Question: Since we can weaken from powersets to Boolean algebras and stay undecidable, how much further can we go while remaining undecidable? Weakening from powersets $(\mathcal{P}(X), \cup)$ to general (join-)semilattices (S, \sqcup), we get a the problem posed by Bergman (2018) and Jipsen et al. (2021) (and SBK (2023a)).

Theorem

For any class \mathcal{S} of semilattices containing $(\mathcal{P}(\mathbb{N}), \cup)$, its logic in the signature $\{\wedge, \vee, \sim, \circ\}$, is undecidable.

Question: What if we weaken even further than semilattices?
(Partial) answer: As semilattices are partial orders ' \leq ' with all binary suprema, we could consider the logic of all partial orders simpliciter.

Question: What if we, instead, reduce our signature \{
Answer: If we stick to semilattices but omit megation, so signature is
we obtain Finean truthmaker semantics, proven decidable in SBK
(2023a).

Semilattice frames, associativity and negation

Question: Since we can weaken from powersets to Boolean algebras and stay undecidable, how much further can we go while remaining undecidable? Weakening from powersets $(\mathcal{P}(X), \cup)$ to general (join-)semilattices (S, \sqcup), we get a the problem posed by Bergman (2018) and Jipsen et al. (2021) (and SBK (2023a)).

Theorem

For any class \mathcal{S} of semilattices containing $(\mathcal{P}(\mathbb{N}), \cup)$, its logic in the signature $\{\wedge, \vee, \sim, \circ\}$, is undecidable.

Question: What if we weaken even further than semilattices?
(Partial) answer: As semilattices are partial orders ' \leq ' with all binary suprema, we could consider the logic of all partial orders simpliciter. This is modal information logic,

Question: What if we, instead, reduce our signature \{
Answer: If we stick to semilattices but omit negation, so signature is
we obtain Finean truthmaker semantics, proven decidable in SBK
(2023a).

Semilattice frames, associativity and negation

Question: Since we can weaken from powersets to Boolean algebras and stay undecidable, how much further can we go while remaining undecidable? Weakening from powersets $(\mathcal{P}(X), \cup)$ to general (join-)semilattices (S, \sqcup), we get a the problem posed by Bergman (2018) and Jipsen et al. (2021) (and SBK (2023a)).

Theorem

For any class \mathcal{S} of semilattices containing $(\mathcal{P}(\mathbb{N}), \cup)$, its logic in the signature $\{\wedge, \vee, \sim, \circ\}$, is undecidable.

Question: What if we weaken even further than semilattices?
(Partial) answer: As semilattices are partial orders ' \leq ' with all binary suprema, we could consider the logic of all partial orders simpliciter. This is modal information logic, which is proven decidable in SBK (2023b).

Question: What if we, instead, reduce our signature \{
Answer: If we stick to semilattices but omit negation, so signature is
we obtain Finean truthmaker semantics, proven decidable in SBk
(2023a).

Semilattice frames, associativity and negation

Question: Since we can weaken from powersets to Boolean algebras and stay undecidable, how much further can we go while remaining undecidable? Weakening from powersets $(\mathcal{P}(X), \cup)$ to general (join-)semilattices (S, \sqcup), we get a the problem posed by Bergman (2018) and Jipsen et al. (2021) (and SBK (2023a)).

Theorem

For any class \mathcal{S} of semilattices containing $(\mathcal{P}(\mathbb{N}), \cup)$, its logic in the signature $\{\wedge, \vee, \sim, \circ\}$, is undecidable.

Question: What if we weaken even further than semilattices?
(Partial) answer: As semilattices are partial orders ' \leq ' with all binary suprema, we could consider the logic of all partial orders simpliciter. This is modal information logic, which is proven decidable in SBK (2023b).
Question: What if we, instead, reduce our signature $\{\wedge, \vee, \sim, \circ\}$?
Answer: If we stick to semilattices but omit negation, so signature is we obtain Finean truthmaker semantics, proven decidable in SBK

Semilattice frames, associativity and negation

Question: Since we can weaken from powersets to Boolean algebras and stay undecidable, how much further can we go while remaining undecidable? Weakening from powersets $(\mathcal{P}(X), \cup)$ to general (join-)semilattices (S, \sqcup), we get a the problem posed by Bergman (2018) and Jipsen et al. (2021) (and SBK (2023a)).

Theorem

For any class \mathcal{S} of semilattices containing $(\mathcal{P}(\mathbb{N}), \cup)$, its logic in the signature $\{\wedge, \vee, \sim, \circ\}$, is undecidable.

Question: What if we weaken even further than semilattices?
(Partial) answer: As semilattices are partial orders ' \leq ' with all binary suprema, we could consider the logic of all partial orders simpliciter. This is modal information logic, which is proven decidable in SBK (2023b).
Question: What if we, instead, reduce our signature $\{\wedge, \vee, \sim, \circ\}$?
Answer: If we stick to semilattices but omit negation, so signature is $\{\wedge, \vee, \circ\}$,
(2023a).

Semilattice frames, associativity and negation

Question: Since we can weaken from powersets to Boolean algebras and stay undecidable, how much further can we go while remaining undecidable? Weakening from powersets $(\mathcal{P}(X), \cup)$ to general (join-)semilattices (S, \sqcup), we get a the problem posed by Bergman (2018) and Jipsen et al. (2021) (and SBK (2023a)).

Theorem

For any class \mathcal{S} of semilattices containing $(\mathcal{P}(\mathbb{N}), \cup)$, its logic in the signature $\{\wedge, \vee, \sim, \circ\}$, is undecidable.

Question: What if we weaken even further than semilattices?
(Partial) answer: As semilattices are partial orders ' \leq ' with all binary suprema, we could consider the logic of all partial orders simpliciter. This is modal information logic, which is proven decidable in SBK (2023b).
Question: What if we, instead, reduce our signature $\{\wedge, \vee, \sim, \circ\}$?
Answer: If we stick to semilattices but omit negation, so signature is $\{\wedge, \vee, \circ\}$, we obtain Finean truthmaker semantics, (2023a).

Semilattice frames, associativity and negation

Question: Since we can weaken from powersets to Boolean algebras and stay undecidable, how much further can we go while remaining undecidable? Weakening from powersets $(\mathcal{P}(X), \cup)$ to general (join-)semilattices (S, \sqcup), we get a the problem posed by Bergman (2018) and Jipsen et al. (2021) (and SBK (2023a)).

Theorem

For any class \mathcal{S} of semilattices containing $(\mathcal{P}(\mathbb{N}), \cup)$, its logic in the signature $\{\wedge, \vee, \sim, \circ\}$, is undecidable.

Question: What if we weaken even further than semilattices?
(Partial) answer: As semilattices are partial orders ' \leq ' with all binary suprema, we could consider the logic of all partial orders simpliciter. This is modal information logic, which is proven decidable in SBK (2023b).
Question: What if we, instead, reduce our signature $\{\wedge, \vee, \sim, \circ\}$?
Answer: If we stick to semilattices but omit negation, so signature is $\{\wedge, \vee, \circ\}$, we obtain Finean truthmaker semantics, proven decidable in SBK (2023a).

Insight 2: associativity matters

Insight 3: negation matters

(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic S decidable?
\mathbf{S} is the logic of semilattice frames $(S, \sqcup, \mathbf{0})$ with a bottom element $\mathbf{0}$, with arbitrary valuations, in the signature $\{\wedge, \vee, \rightarrow\}$. ' \rightarrow ' is closely connected to
\qquad
What we know about the problem:

- Omittine diciunction the Ingic \mathbf{S}

What we notice about the problem:
\qquad
\qquad
Frames of \mathbf{S} are semilattices, they are associative! [suggesting

(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic \mathbf{S} decidable?

What we know about the problem:

If we restrict to hereditary valuations, we obtain positive intuitionistic
\mathbf{S} is closely connected to positive relevant \mathbf{R}
techniques
Eventually, this led Urquhart (2016) to conjecture that S is

What we notice about the problem:
\qquad

(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic \mathbf{S} decidable?
\mathbf{S} is the logic of semilattice frames $(S, \sqcup, \mathbf{0})$ with a bottom element $\mathbf{0}$,
'o' (it is its residual)
What we know about the problem:

What we notice about the problem:

(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic \mathbf{S} decidable?
\mathbf{S} is the logic of semilattice frames $(S, \sqcup, \mathbf{0})$ with a bottom element $\mathbf{0}$, with arbitrary valuations,

What we know about the problem:

If we restrict to hereditary valuations, we obtain positive intuitionistic
logic, which is
\mathbf{S} is closely conn ected to positive relevant \mathbf{R}^{+}, which is
Und. of R^{+}was shown by Urquhart (1984), but S eluded these
techniques
Fventually th s led Urquhart (2016) to conjecture that S is

What we notice about the problem:

(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic \mathbf{S} decidable?
\mathbf{S} is the logic of semilattice frames $(S, \sqcup, \mathbf{0})$ with a bottom element $\mathbf{0}$, with arbitrary valuations, in the signature $\{\wedge, \vee, \rightarrow\}$. ' \rightarrow ' is closely connected to 'o' (it is its residual).

What we know about the problem:

```
    Omitting disjunction, the logic S
    If we restrict to hereditary valuations, we obtain positive intuitionistic
    logic, which is
    S}\mathrm{ is closely connected to positive relevant }\mp@subsup{\mathbf{R}}{}{+}\mathrm{ ,which is
    Und. of R}\mp@subsup{\mathbf{R}}{}{+}\mathrm{ was shown by Urquhart (1984), but S eluded these
    technioues
    Eventually, this led Urquhart (2016) to conjecture that S is
```

What we notice about the problem:

(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic \mathbf{S} decidable?
\mathbf{S} is the logic of semilattice frames $(S, \sqcup, \mathbf{0})$ with a bottom element $\mathbf{0}$, with arbitrary valuations, in the signature $\{\wedge, \vee, \rightarrow\}$. ' \rightarrow ' is closely connected to 'o' (it is its residual).

What we know about the problem:

If we restrict to hereditary valuations, we obtain positive intuitionistic
logic, which is
S is closely connected to positive relevant \mathbf{R}^{+}, which is
Und. of \mathbf{R}^{+}was shown by Urquhart (1984), but \mathbf{S} eluded these
techniques.
Eventually, this led Urquhart (2016) to conjecture that S is

What we notice about the problem:
valuations are arbitrary, contrapositive intuitionistic logic. ['suggesting'

S is positive, no negation! [suggesting
Frames of \mathbf{S} are semilattices, they are associative! [suggesting

(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic \mathbf{S} decidable?
\mathbf{S} is the logic of semilattice frames $(S, \sqcup, \mathbf{0})$ with a bottom element $\mathbf{0}$, with arbitrary valuations, in the signature $\{\wedge, \vee, \rightarrow\}$. ' \rightarrow ' is closely connected to 'o' (it is its residual).

What we know about the problem:

- Omitting disjunction, the logic $\mathbf{S}_{\wedge, \rightarrow}$ is decidable.
\mathbf{S} is closely connected to positive relevant \mathbf{R}^{+}, which is
Und. of \mathbf{R}^{+}was shown by Urquhart (1984), but \mathbf{S} eluded these
techniques
Eventually, this led Urquhart (2016) to conjecture that S is

What we notice about the problem:
Valuations are arbitrary, contra positive intuitionistic logic. ['suggesting'
S is positive, no negation! [suggesting
Frames of S are semilattices, they are associative! [suggesting

(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic \mathbf{S} decidable?
\mathbf{S} is the logic of semilattice frames $(S, \sqcup, \mathbf{0})$ with a bottom element $\mathbf{0}$, with arbitrary valuations, in the signature $\{\wedge, \vee, \rightarrow\}$. ' \rightarrow ' is closely connected to 'o' (it is its residual).

What we know about the problem:

- Omitting disjunction, the logic $\mathbf{S}_{\wedge, \rightarrow}$ is decidable.
- If we restrict to hereditary valuations,

```
S}\mathrm{ is closely connected to positive relevant }\mp@subsup{\mathbf{R}}{}{+}\mathrm{ ,which is
    Und. of R}\mp@subsup{\mathbf{R}}{}{+}\mathrm{ was shown by Urquhart (1984), but S eluded these
    techniques
    Eventually, this led Urquhart (2016) to conjecture that S is
```

What we notice about the problem:
\square
Valuations are arbitrary, contra positive intuitionistic logic. ['suggesting'
S is positive, no negation! [suggesting
Frames of S are semilattices, they are associative! [suggesting

(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic \mathbf{S} decidable?
\mathbf{S} is the logic of semilattice frames $(S, \sqcup, \mathbf{0})$ with a bottom element $\mathbf{0}$, with arbitrary valuations, in the signature $\{\wedge, \vee, \rightarrow\}$. ' \rightarrow ' is closely connected to 'o' (it is its residual).

What we know about the problem:

- Omitting disjunction, the logic $\mathbf{S}_{\wedge, \rightarrow}$ is decidable.
- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
S is closely connected to positive relevant \mathbf{R}^{+}, which is
Und. of \mathbf{R}^{+}was shown by Urquhart (1984), but \mathbf{S} eluded these
techniaues.
Eventually, this led Urquhart (2016) to conjecture that S is

What we notice about the problem:

> Valuations are arhitrary contra nositive intuitionistic logic. ['suggesting

S is positive, no negation! [suggesting
Frames of \mathbf{S} are semilattices, they are associative! [suggesting

(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic \mathbf{S} decidable?
\mathbf{S} is the logic of semilattice frames $(S, \sqcup, \mathbf{0})$ with a bottom element $\mathbf{0}$, with arbitrary valuations, in the signature $\{\wedge, \vee, \rightarrow\}$. ' \rightarrow ' is closely connected to 'o' (it is its residual).

What we know about the problem:

- Omitting disjunction, the logic $\mathbf{S}_{\wedge, \rightarrow}$ is decidable.
- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- \mathbf{S} is closely connected to positive relevant \mathbf{R}^{+},
techniques.
Fventually this led Urquhart (2016) to conjecture that S is

What we notice about the problem:

Valuations are arbitrary, contrapositive intuitionistic logic. ['suggesting

S is positive, no negation! [suggesting
Frames of \mathbf{S} are semilattices, they are associative! [suggesting

(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic \mathbf{S} decidable?
\mathbf{S} is the logic of semilattice frames $(S, \sqcup, \mathbf{0})$ with a bottom element $\mathbf{0}$, with arbitrary valuations, in the signature $\{\wedge, \vee, \rightarrow\}$. ' \rightarrow ' is closely connected to 'o' (it is its residual).

What we know about the problem:

- Omitting disjunction, the logic $\mathbf{S}_{\wedge, \rightarrow}$ is decidable.
- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- \mathbf{S} is closely connected to positive relevant \mathbf{R}^{+}, which is undecidable.
techniques.
Fventually this led Urquhart (2016) to conjecture that S is

What we notice about the problem:

Valuations are arhitrary contra nositive intuitionistic logic. ['suggesting

S is positive, no negation! [suggesting
Frames of \mathbf{S} are semilattices, they are associative! [suggesting

(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic \mathbf{S} decidable?
\mathbf{S} is the logic of semilattice frames $(S, \sqcup, \mathbf{0})$ with a bottom element $\mathbf{0}$, with arbitrary valuations, in the signature $\{\wedge, \vee, \rightarrow\}$. ' \rightarrow ' is closely connected to 'o' (it is its residual).

What we know about the problem:

- Omitting disjunction, the logic $\mathbf{S}_{\wedge, \rightarrow}$ is decidable.
- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- \mathbf{S} is closely connected to positive relevant \mathbf{R}^{+}, which is undecidable.
- Und. of \mathbf{R}^{+}was shown by Urquhart (1984),
techniques.
Eventually, this led Urquhart (2016) to conjecture that \mathbf{S} is

What we notice about the problem:

Valuations are arbitrary, contra positive intuitionistic logic. ['suggesting

S is positive, no negation! [suggesting
Frames of \mathbf{S} are semilattices, they are associative! [suggesting

(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic \mathbf{S} decidable?
\mathbf{S} is the logic of semilattice frames $(S, \sqcup, \mathbf{0})$ with a bottom element $\mathbf{0}$, with arbitrary valuations, in the signature $\{\wedge, \vee, \rightarrow\}$. ' \rightarrow ' is closely connected to 'o' (it is its residual).

What we know about the problem:

- Omitting disjunction, the logic $\mathbf{S}_{\wedge, \rightarrow}$ is decidable.
- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- \mathbf{S} is closely connected to positive relevant \mathbf{R}^{+}, which is undecidable.
- Und. of \mathbf{R}^{+}was shown by Urquhart (1984), but \mathbf{S} eluded these techniques.
Eventually, this led Urquhart (2016) to conjecture that S is

What we notice about the problem:

Valuations are arbitrary, contra positive intuitionistic logic. ['suggesting

S is positive, no negation! [suggesting
Frames of \mathbf{S} are semilattices, they are associative! [suggesting

(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic \mathbf{S} decidable?
\mathbf{S} is the logic of semilattice frames $(S, \sqcup, \mathbf{0})$ with a bottom element $\mathbf{0}$, with arbitrary valuations, in the signature $\{\wedge, \vee, \rightarrow\}$. ' \rightarrow ' is closely connected to 'o' (it is its residual).

What we know about the problem:

- Omitting disjunction, the logic $\mathbf{S}_{\wedge, \rightarrow}$ is decidable.
- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- \mathbf{S} is closely connected to positive relevant \mathbf{R}^{+}, which is undecidable.
- Und. of \mathbf{R}^{+}was shown by Urquhart (1984), but \mathbf{S} eluded these techniques.
- Eventually, this led Urquhart (2016) to conjecture that \mathbf{S} is decidable.

What we notice about the problem:

Valuations are arbitrary, contra positive intuitionistic logic. ['suggesting'

S is positive, no negation! [suggesting
Frames of \mathbf{S} are semilattices, they are associative! [suggesting

(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic \mathbf{S} decidable?
\mathbf{S} is the logic of semilattice frames $(S, \sqcup, \mathbf{0})$ with a bottom element $\mathbf{0}$, with arbitrary valuations, in the signature $\{\wedge, \vee, \rightarrow\}$. ' \rightarrow ' is closely connected to 'o' (it is its residual).

What we know about the problem:

- Omitting disjunction, the logic $\mathbf{S}_{\wedge, \rightarrow}$ is decidable.
- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- \mathbf{S} is closely connected to positive relevant \mathbf{R}^{+}, which is undecidable.
- Und. of \mathbf{R}^{+}was shown by Urquhart (1984), but \mathbf{S} eluded these techniques.
- Eventually, this led Urquhart (2016) to conjecture that \mathbf{S} is decidable.
What we notice about the problem:

[^5]
(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic \mathbf{S} decidable?
\mathbf{S} is the logic of semilattice frames $(S, \sqcup, \mathbf{0})$ with a bottom element $\mathbf{0}$, with arbitrary valuations, in the signature $\{\wedge, \vee, \rightarrow\}$. ' \rightarrow ' is closely connected to 'o' (it is its residual).

What we know about the problem:

- Omitting disjunction, the logic $\mathbf{S}_{\wedge, \rightarrow}$ is decidable.
- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- \mathbf{S} is closely connected to positive relevant \mathbf{R}^{+}, which is undecidable.
- Und. of \mathbf{R}^{+}was shown by Urquhart (1984), but \mathbf{S} eluded these techniques.
- Eventually, this led Urquhart (2016) to conjecture that \mathbf{S} is decidable.
What we notice about the problem:
- Valuations are arbitrary, contra positive intuitionistic logic. ['suggesting' undecidability]

(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic \mathbf{S} decidable?
\mathbf{S} is the logic of semilattice frames $(S, \sqcup, \mathbf{0})$ with a bottom element $\mathbf{0}$, with arbitrary valuations, in the signature $\{\wedge, \vee, \rightarrow\}$. ' \rightarrow ' is closely connected to 'o' (it is its residual).

What we know about the problem:

- Omitting disjunction, the logic $\mathbf{S}_{\wedge, \rightarrow}$ is decidable.
- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- \mathbf{S} is closely connected to positive relevant \mathbf{R}^{+}, which is undecidable.
- Und. of \mathbf{R}^{+}was shown by Urquhart (1984), but \mathbf{S} eluded these techniques.
- Eventually, this led Urquhart (2016) to conjecture that \mathbf{S} is decidable.
What we notice about the problem:
- Valuations are arbitrary, contra positive intuitionistic logic. ['suggesting' undecidability]
- \mathbf{S} is positive, no negation! [suggesting decidability]

(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic \mathbf{S} decidable?
\mathbf{S} is the logic of semilattice frames $(S, \sqcup, \mathbf{0})$ with a bottom element $\mathbf{0}$, with arbitrary valuations, in the signature $\{\wedge, \vee, \rightarrow\}$. ' \rightarrow ' is closely connected to 'o' (it is its residual).

What we know about the problem:

- Omitting disjunction, the logic $\mathbf{S}_{\wedge, \rightarrow}$ is decidable.
- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- \mathbf{S} is closely connected to positive relevant \mathbf{R}^{+}, which is undecidable.
- Und. of \mathbf{R}^{+}was shown by Urquhart (1984), but \mathbf{S} eluded these techniques.
- Eventually, this led Urquhart (2016) to conjecture that \mathbf{S} is decidable.
What we notice about the problem:
- Valuations are arbitrary, contra positive intuitionistic logic. ['suggesting' undecidability]
- \mathbf{S} is positive, no negation! [suggesting decidability]
- Frames of \mathbf{S} are semilattices, they are associative! [suggesting undecidability]

Theorem: S is undecidable

References I

E- Berger, R. (1966). The undecidability of the domino problem. English. Vol. 66. Mem. Am. Math. Soc. Providence, RI: American Mathematical Society (AMS). Dol: 10.1090/memo/0066 (cit. on pp. 33-37).

囯 Bergman, C. (2018). "Introducing Boolean Semilattices". In: Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science. Outstanding Contributions to Logic. Ed. by J. Czelakowski. Springer, pp. 103-130 (cit. on pp. 43-54).

围 Goranko, V. and D. Vakarelov (1999). "Hyperboolean Algebras and Hyperboolean Modal Logic". In: Journal of Applied Non-Classical Logics 9.2-3, pp. 345-368. Dol: 10.1080/11663081.1999.10510971 (cit. on pp. 27-32, 38-41).

References II

回 Jipsen, P., M. Eyad Kurd-Misto, and J. Wimberley (2021). "On the Representation of Boolean Magmas and Boolean Semilattices". In: Hajnal Andréka and István Németi on Unity of Science: From Computing to Relativity Theory Through Algebraic Logic. Ed. by J. Madarász and G. Székely. Cham: Springer International Publishing, pp. 289-312. DOI: 10.1007/978-3-030-64187-0_12 (cit. on pp. 43-54).

Enudstorp, S. B. (2023a). "Logics of Truthmaker Semantics: Comparison, Compactness and Decidability". In: Synthese (cit. on pp. 43-54).
(- (2023b). "Modal Information Logics: Axiomatizations and Decidability". In: Journal of Philosophical Logic (cit. on pp. 43-54).

國 Urquhart, A. (1984). "The undecidability of entailment and relevant implication". In: Journal of Symbolic Logic 49, pp. 1059 -1073 (cit. on pp. 57-74).

References III

围 Urquhart, A. (2016). "Relevance Logic: Problems Open and Closed". In: The Australasian Journal of Logic 13 (cit. on pp. 57-74).

围 Wang, H. (1963). "Dominoes and the $\forall \exists \forall$ case of the decision problem". In: Mathematical Theory of Automata, pp. 23-55 (cit. on pp. 33-37).

Thank you!

[^0]: ${ }^{1}$ Goranko and Vakarelov (1999) call their logic 'hyperboolean modal logic' and include

[^1]: ${ }^{1}$ Goranko and Vakarelov (1999) call their logic 'hyperboolean modal logic' and include

[^2]: ${ }^{1}$ Goranko and Vakarelov (1999) call their logic 'hyperboolean modal logic' and include

[^3]: ${ }^{1}$ Goranko and Vakarelov (1999) call their logic 'hyperboolean modal logic' and include modalities for all the Boolean operations, not just the join.

[^4]: ${ }^{1}$ Goranko and Vakarelov (1999) call their logic 'hyperboolean modal logic' and include modalities for all the Boolean operations, not just the join.

[^5]: Valuations are arbitrary, contra positive intuitionistic logic. ['suggesting

 S is positive, no negation! [suggesting
 Frames of \mathbf{S} are semilattices, they are associative! [suggesting

