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Plan for the talk

– (Un)decidability: what and why?
– Propositional team logics and their decidability
– Exploring boundaries between the decidable and the
undecidable

• Solving problems and obtaining insights along the way
• Using insights to solve one last problem
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(Un)decidability: what and why?

What?

A decision problem is a collection of inputs I , with a yes-or-no question for
each i ∈ I .

A decision problem is decidable if there is an effective method that, given
any i ∈ I , accurately answers the question. Otherwise, it is undecidable.

A logic L, in a language L, is decidable if there is an effective method that,
given any φ ∈ L, determines whether L ⊢ φ. Otherwise, it is undecidable.

Why?
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(Un)decidability: what and why?

What?

A decision problem is a collection of inputs I , with a yes-or-no question for
each i ∈ I .

A decision problem is decidable if there is an effective method that, given
any i ∈ I , accurately answers the question. Otherwise, it is undecidable.

A logic L, in a language L, is decidable if there is an effective method that,
given any φ ∈ L, determines whether L ⊢ φ. Otherwise, it is undecidable.

Why? Because it is a deep, profound and significant conceptual distinction.
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Propositional team logics and their decidability

Traditionally (in, e.g., CPC), formulas φ are evaluated at single valuations
v : Prop → {0, 1},

v ⊨ φ.
In team semantics, formulas φ are evaluated at sets (‘teams’) of valuations
s ⊆ {v | v : Prop → {0, 1}},

s ⊨ φ.

Definition (some team-semantic clauses)
Let X := {v | v : Prop → {0, 1}}. For s ∈ P(X), we define

s ⊨ p iff ∀v ∈ s : v(p) = 1,

s ⊨ φ ∧ ψ iff s ⊨ φ and s ⊨ ψ,
s ⊨ φ ∨∨ψ iff s ⊨ φ or s ⊨ ψ,
s ⊨ ∼φ iff s ⊭ φ,

s ⊨ φ ∨ ψ iff there exist s′, s′′ ∈ P(X) such that s′ ⊨ φ;
s′′ ⊨ ψ; and s = s′ ∪ s′′.

Observation. All propositional team logics are decidable: given φ, simply check
whether s ⊨ φ for all s ⊆ {v | v : Prop(φ) → {0, 1}}.
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Yet, this explanation is hardly satisfactory.
What is it that makes propositional team logics

decidable, and others not?
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Team semantics as relational semantics

Recall our semantic clauses: For X := {v | v : Prop → {0, 1}} and
s ∈ P(X), we had

s ⊨ p iff ∀v ∈ s : v(p) = 1,

s ⊨ φ ∧ ψ iff s ⊨ φ and s ⊨ ψ,
s ⊨ φ ∨∨ψ iff s ⊨ φ or s ⊨ ψ,
s ⊨ ∼φ iff s ⊭ φ,
s ⊨ φ ∨ ψ iff there exist s′, s′′ ∈ P(X) such that s′ ⊨ φ;

s′′ ⊨ ψ; and s = s′ ∪ s′′.

7



Team semantics as relational semantics

Recall our semantic clauses: For X := {v | v : Prop → {0, 1}} and
s ∈ P(X), we had

s ⊨ p iff ∀v ∈ s : v(p) = 1,

s ⊨ φ ∧ ψ iff s ⊨ φ and s ⊨ ψ,
s ⊨ φ ∨ ψ iff s ⊨ φ or s ⊨ ψ,
s ⊨ ∼φ iff s ⊭ φ,
s ⊨ φ ◦ ψ iff there exist s′, s′′ ∈ P(X) such that s′ ⊨ φ;

s′′ ⊨ ψ; and s = s′ ∪ s′′.

This induces a powerset frame F = (P(X),∪), where ‘◦’ is a binary modality
referring to the ternary ∪-relation s = s′ ∪ s′′;

8



Team semantics as relational semantics

Recall our semantic clauses: For X := {v | v : Prop → {0, 1}} and
s ∈ P(X), we had

s ⊨ p iff ∀v ∈ s : v(p) = 1,

s ⊨ φ ∧ ψ iff s ⊨ φ and s ⊨ ψ,
s ⊨ φ ∨ ψ iff s ⊨ φ or s ⊨ ψ,
s ⊨ ∼φ iff s ⊭ φ,
s ⊨ φ ◦ ψ iff there exist s′, s′′ ∈ P(X) such that s′ ⊨ φ;

s′′ ⊨ ψ; and s = s′ ∪ s′′.
This induces a powerset frame F = (P(X),∪), where ‘◦’ is a binary modality
referring to the ternary ∪-relation s = s′ ∪ s′′;

8



Team semantics as relational semantics

Recall our semantic clauses: For X := {v | v : Prop → {0, 1}} and
s ∈ P(X), we had

s ⊨ p iff ∀v ∈ s : v(p) = 1,

s ⊨ φ ∧ ψ iff s ⊨ φ and s ⊨ ψ,
s ⊨ φ ∨ ψ iff s ⊨ φ or s ⊨ ψ,
s ⊨ ∼φ iff s ⊭ φ,
s ⊨ φ ◦ ψ iff there exist s′, s′′ ∈ P(X) such that s′ ⊨ φ;

s′′ ⊨ ψ; and s = s′ ∪ s′′.
This induces a powerset frame F = (P(X),∪), where ‘◦’ is a binary modality
referring to the ternary ∪-relation s = s′ ∪ s′′; and a model
M = (P(X),∪, V ) with a ‘principal valuation’, i.e.,

V (p) := {s ∈ P(X) | ∀v ∈ s : v(p) = 1} = ↓{v ∈ X | v(p) = 1}.

In fact, if we take all powerset frames (P(X),∪), redefine the base clause
(P(X),∪, V ), s ⊩ p iff s ∈ V (p),

and only allow principal valuations V : Prop → {↓s | s ∈ P(X)}, we get
sound and complete relational semantics for team logics.
Proof. A simple p-morphism argument. 9
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Powerset frames and Boolean frames

Summarizing, (i) team logics are decidable, and (ii) relational semantics for
team logics are given by powerset frames (P(X),∪) with principal
valuations V : Prop → {↓s | s ∈ P(X)}.
Question: Sticking with the signature {∧,∨,∼, ◦}, what happens if we allow
for arbitrary valuations V : Prop → PP(X)? Does the logic remain
decidable?
In fact, this question is intimately related with an open problem: Goranko
and Vakarelov (1999) consider the logic of Boolean frames – instead of a
powerset P(X), the carrier is a Boolean algebra B – and raises the problem
of its decidability.1

Theorem
The logic of powerset frames, in the signature {∧,∨,∼, ◦}, with arbitrary
valuations is undecidable. And so is the hyperboolean modal logic of
Goranko and Vakarelov (1999).

1Goranko and Vakarelov (1999) call their logic ‘hyperboolean modal logic’ and include
modalities for all the Boolean operations, not just the join.
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and Vakarelov (1999) consider the logic of Boolean frames – instead of a
powerset P(X), the carrier is a Boolean algebra B – and raises the problem
of its decidability.1

Theorem
The logic of powerset frames, in the signature {∧,∨,∼, ◦}, with arbitrary
valuations is undecidable. And so is the hyperboolean modal logic of
Goranko and Vakarelov (1999).

1Goranko and Vakarelov (1999) call their logic ‘hyperboolean modal logic’ and include
modalities for all the Boolean operations, not just the join.
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Proof method: tiling

• A (Wang) tile is a square with colors on each side.
• The tiling problem: given any finite set of tilesW , determine whether
each point in the quadrant N2 can be assigned a tile fromW such that
neighboring tiles share matching colors on connecting sides.

• The tiling problem was introduced by Wang (1963) and proven
undecidable by Berger (1966).

Figure 1: Wang tiles
Figure 2: A tiling of the
plane

Figures taken from: https://en.wikipedia.org/wiki/Wang_tile
11
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Proof method: tiling

Theorem
The logic of powerset frames, in the signature {∧,∨,∼, ◦}, with arbitrary
valuations is undecidable. And so is the hyperboolean modal logic of
Goranko and Vakarelov (1999).

Proof idea.
For each finite set of tilesW , we construct a formula ϕW such thatW tiles
the quadrant if and only if ϕW is satisfiable.

Dividing the proof into two lemmas, corresponding to a direction each, we
can prove both results in one go:

Lemma
If ϕW is satisfiable (in a Boolean frame), thenW tiles N2.

Lemma
IfW tiles N2, then ϕW is satisfiable (in (P(N),∪)).
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Insight 1: valuations matter
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Semilattice frames, associativity and negation

Question: Since we can weaken from powersets to Boolean algebras and
stay undecidable, how much further can we go while remaining undecidable?
Weakening from powersets (P(X),∪) to general (join-)semilattices (S,⊔),
we get a the problem posed by Bergman (2018) and Jipsen et al. (2021) (and
SBK (2023a)).

Theorem
For any class S of semilattices containing (P(N),∪), its logic in the signature
{∧,∨,∼, ◦}, is undecidable.

Question: What if we weaken even further than semilattices?
(Partial) answer: As semilattices are partial orders ‘≤’ with all binary
suprema, we could consider the logic of all partial orders simpliciter. This is
modal information logic, which is proven decidable in SBK (2023b).
Question: What if we, instead, reduce our signature {∧,∨,∼, ◦}?
Answer: If we stick to semilattices but omit negation, so signature is
{∧,∨, ◦}, we obtain Finean truthmaker semantics, proven decidable in SBK
(2023a).
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Insight 2: associativity matters

15



Insight 3: negation matters
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(Un)decidability of relevant S: using our insights

Problem of concern: Is relevant logic S decidable?
S is the logic of semilattice frames (S,⊔,0) with a bottom element 0, with
arbitrary valuations, in the signature {∧,∨,→}. ‘→’ is closely connected to
‘◦’ (it is its residual).
What we know about the problem:

• Omitting disjunction, the logic S∧,→ is decidable.
• If we restrict to hereditary valuations, we obtain positive intuitionistic
logic, which is decidable.

• S is closely connected to positive relevant R+, which is undecidable.
• Und. of R+ was shown by Urquhart (1984), but S eluded these
techniques.

• Eventually, this led Urquhart (2016) to conjecture that S is
decidable.

What we notice about the problem:
• Valuations are arbitrary, contra positive intuitionistic logic. [‘suggesting’
undecidability]

• S is positive, no negation! [suggesting decidability]
• Frames of S are semilattices, they are associative! [suggesting
undecidability] 17
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Theorem: S is undecidable
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