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Plan for the talk

— (Un)decidability: what and why?
— Propositional team logics and their decidability

— Exploring boundaries between the decidable and the
undecidable
- Solving problems and obtaining insights along the way
- Using insights to solve one last problem
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decidability: what and why?

What?

A decision problem is a collection of inputs I, with a yes-or-no question for
eachi e I.

A decision problem is decidable if there is an effective method that, given
any i € I, accurately answers the question. Otherwise, it is undecidable.

Alogic L, in a language £, is decidable if there is an effective method that,
given any ¢ € L, determines whether L - . Otherwise, it is undecidable.

Why? Because it is a deep, profound and significant conceptual distinction.
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Traditionally (in, e.g.,, CPC), formulas ¢ are evaluated at
v : Prop — {0, 1},
v E p.
In team semantics, formulas o are evaluated at
s C{v|v:Prop— {0,1}},
skE .

Definition (some team-semantic clauses)
Let X := {v | v: Prop — {0,1}}. For s € P(X), we define

SEp iff Yo € s:o(p) =1,

SEpAY iff sE e and sk,

S E oW iff sE@ or sE,

sk ~p iff sk o,

sEpVy iff there exist ', s” € P(X) such that s" F ¢;

s"Eq; ands=s Us".

Observation. All propositional team logics are decidable: given ¢, simply check
whether s E p forall s C {v | v: Prop(¢) — {0,1}}.



Yet, this explanation is hardly satisfactory.
What is it that makes propositional team logics
decidable, and others not?
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Proof. A simple p-morphism argument.
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Summarizing, (i) team logics are decidable, and (ii) relational semantics for
team logics are given by powerset frames (P(X),U) with principal
valuations V : Prop — {]s | s € P(X)}.

Question: Sticking with the signature {A, V, ~, o}, what happens if we allow
for arbitrary valuations V' : Prop — PP (X)? Does the logic remain
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In fact, this question is intimately related with an open problem: Goranko
and Vakarelov (1999) consider the logic of Boolean frames - instead of a
powerset P(X), the carrier is a Boolean algebra B - and raises the problem
of its decidability.’

Theorem

The logic of powerset frames, in the signature {A, Vv, ~, o}, with arbitrary
valuations is undecidable. And so is the hyperboolean modal logic of

Goranko and Vakarelov (1999). )

TGoranko and Vakarelov (1999) call their logic ‘hyperboolean modal logic’ and include
modalities for all the Boolean operations, not just the join.
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Proof method: tiling

- A(Wang) tile is a square with colors on each side.

- The tiling problem: given any finite set of tiles W, determine whether
each point in the quadrant N2 can be assigned a tile from W such that
neighboring tiles share matching colors on connecting sides.

- The tiling problem was introduced by Wang (1963) and proven
undecidable by Berger (1966).

Figure 2: A tiling of the
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Proof method: tiling

The logic of powerset frames, in the signature {A, Vv, ~, o}, with arbitrary
valuations is undecidable. And so is the hyperboolean modal logic of
Goranko and Vakarelov (1999).

Proof idea.
For each finite set of tiles W, we construct a formula ¢, such that W tiles

the quadrant if and only if ¢,y is satisfiable. O

Dividing the proof into two lemmas, corresponding to a direction each, we
can prove both results in one go:

If ¢y is satisfiable (in a Boolean frame), then W tiles N2,

If W tiles N2, then ¢y, is satisfiable (in (P(N),U)).



Insight 1: valuations matter
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{A, V, o}, we obtain Finean truthmaker semantics, proven decidable in SBK
(2023a).
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Problem of concern: Is relevant logic S decidable?

S is the logic of semilattice frames (S, L, 0) with a bottom element 0, with
arbitrary valuations, in the signature {A, Vv, —}. ‘=" is closely connected to
‘o’ (it is its residual).

What we know about the problem:

- Omitting disjunction, the logic S, is decidable.
- If we restrict to hereditary valuations, we obtain positive intuitionistic
logic, which is decidable.
- Sis closely connected to positive relevant R™, which is undecidable.
- Und. of R™ was shown by Urquhart (1984), but S eluded these
techniques.
- Eventually, this led Urquhart (2016) to conjecture that S is

decidable.
What we notice about the problem:

- Valuations are arbitrary, contra positive intuitionistic logic. [‘'suggesting’
undecidability]

- S is positive, no negation! [suggesting decidability]

- Frames of S are semilattices, they are associative! [suggesting
undecidability]



Theorem: S is undecidable
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